Inferring Block Structure of Graphical Models in Exponential Families

نویسندگان

  • Siqi Sun
  • Hai Wang
  • Jinbo Xu
چکیده

Learning the structure of a graphical model is a fundamental problem and it is used extensively to infer the relationship between random variables. In many real world applications, we usually have some prior knowledge about the underlying graph structure, such as degree distribution and block structure. In this paper, we propose a novel generative model for describing the block structure in general exponential families, and optimize it by an Expectation-Maximization(EM) algorithm with variational Bayes. Experimental results show that our method performs well on both synthetic and real data. Furthermore, our method can predict overlapping block structure of a graphical model in general exponential families.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strati ed Exponential Families: Graphical Models and Model Selection

We provide a classi cation of graphical models according to their representation as exponential families. Undirected graphical models with no hidden variables are linear exponential families (LEFs), directed acyclic graphical (DAG) models and chain graphs with no hidden variables, including DAG models with several families of local distributions, are curved exponential families (CEFs) and graph...

متن کامل

Graphical Models and Exponential Families

We provide a classi cation of graphical models according to their representation as subfamilies of exponential families. Undirected graphical models with no hidden variables are linear exponential families (LEFs), directed acyclic graphical models and chain graphs with no hidden variables, including Bayesian networks with several families of local distributions, are curved exponential families ...

متن کامل

Support Sets of Distributions with given Interaction Structure

We study closures of hierarchical models which are exponential families associated with hypergraphs by decomposing the corresponding interaction spaces in a natural and transparent way. Here, we apply general results on closures of exponential families. Index Terms – Closure of exponential family, graphical model, hierarchical model, interaction order.

متن کامل

Bayesian approach to inference of population structure

Methods of inferring the population structure‎, ‎its applications in identifying disease models as well as foresighting the physical and mental situation of human beings have been finding ever-increasing importance‎. ‎In this article‎, ‎first‎, ‎motivation and significance of studying the problem of population structure is explained‎. ‎In the next section‎, ‎the applications of inference of p...

متن کامل

Graphical models via univariate exponential family distributions

Undirected graphical models, or Markov networks, are a popular class of statistical models, used in a wide variety of applications. Popular instances of this class include Gaussian graphical models and Ising models. In many settings, however, it might not be clear which subclass of graphical models to use, particularly for non-Gaussian and non-categorical data. In this paper, we consider a gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015